

VARIABLE SELECTION BY AN APPROXIMATION OF THE ℓ_0 NORM IN PLN MODEL

Togo Jean Yves KIOYE^{2,3}, Paul-Marie GROLLEMUND^{1,2,3}, Jocelyn CHAUVET^{4,5} and Christophe CHASSARD^{2,3} ¹LMPB; ²Clermont Auvergne University; ³UMRF, INRAE, VetAgro Sup; ⁴LARIS, Angers University; ⁵ICES, Vendée Catholic Institute

CONTEXT AND MOTIVATIONS

Understand what underlies milk quality

- Sensorial quality and biochemical composition
- Prairie biodiversity and livestock farming practices
- Relationship between different microbial communities

Improving approaches at agri-food system level

- Impact of farming practices

SPARSE INFERENCE

Ideal variable selection strategy

- Add an ℓ_0 penalty
- NP-hard problem
- Difficult to optimize
- \triangleright ℓ_0 is non-convex

Some relaxing strategies

- Add an ℓ_q penalty to the lower bound of the likelihood (ELBO)
- Select an optimal tuning parameter λ
- Maximizing an information criterion: BIC, AIC

Penalization of the ELBO

Upstream and downstream microbial flows

$J_{pen}(\boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{\Sigma}, \boldsymbol{\psi}) = J(\boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{\Sigma}, \boldsymbol{\psi}) - \boldsymbol{\lambda} \|\boldsymbol{B}\|_{q}$

STUDY OF MICROBIAL COMMUNITIES

Several ecosystems concerned

- **Environment**: soil, grass, air
- **Farm**: barn, bedding, feed
- **Cow**: teats, faeces, rumen, milk
- ► Milk storage, cheese

Data collected about each ecosystem

- Microbial composition
- Physico-chemical composition
- Presence of pathogens
- Type of farming system

Dan Com Man Dom Dom Dom Dom

TOOLS OF DATA COLLECTION

Measuring the presence of microbes in milk [1]

- Advanced genomics techniques: abundance of each species
- Tracking microbial species or strains over several years
- Big datasets (biostatistics and bioinformatics)

USING SMOOTH INFORMATION CRITERION (SIC) [3]

 $J_{pen}(\boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{\Sigma}, \boldsymbol{\psi}) = J(\boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{\Sigma}, \boldsymbol{\psi}) - \boldsymbol{\lambda} \|\boldsymbol{B}\|_{0, \varepsilon}$

- $\|\boldsymbol{B}\|_{0,\varepsilon} = \sum_{i=1}^{p} \sum_{j=1}^{d} \phi_{\varepsilon}(\boldsymbol{B}_{i,j})$ $\phi_{\varepsilon}(x) = \frac{x^2}{x^2 + \varepsilon^2}$
- ϕ_{ε} is differentiable for $\varepsilon > 0$, and $\lim_{\varepsilon \to 0} \phi_{\varepsilon}(x) = \|x\|_0$
- For **BIC**: $\lambda = \log(n)$; for **AIC**: $\lambda = 2$ (computationally advantageous)

ε-telescoping approach to stabilize the optimization procedure

Database of projects

- Amont Saint-Nectaire project: impact of environmental variables
- **MINDS** project: differences in microbiota as a function of botanical diversity
- **TANDEM** project: difference in microbiota, agroecology / intensive agriculture, resilience to disturbance

OBJECTIVES

- Studying the joint abundances of bacteria
- Evaluating the influence of environmental factors
- derstanding the structural interactions between bacteria
- Taking account of offsets

Model parameters: $\boldsymbol{\theta} = (\boldsymbol{B}, \boldsymbol{\Sigma})$

Variable selection

MODELISATION AND INFERENCE

Poisson Log-Normal (PLN) model [2]

- **observation**: $\mathbf{Y}_i | \mathbf{Z}_i \sim \mathcal{P}(\exp(\mathbf{Z}_i))$ $\boldsymbol{Z}_i \sim \mathcal{N}_{\mathcal{D}}(\boldsymbol{o}_i + \boldsymbol{x}_i^{\top} \boldsymbol{B}, \boldsymbol{\Sigma})$ latent:
- ► $\mathbf{Y} \in \mathbb{N}^{n \times p}$: responses
 - ► $X \in \mathbb{R}^{n \times d}$: variables
 - ▶ $\boldsymbol{O} \in \mathbb{N}^{n \times p}$: offsets
 - ► $\boldsymbol{B} \in \mathbb{R}^{d \times p}$: regressors
 - ► $\Sigma \in \mathbb{R}^{p \times p}$: covariance

Optimization algorithm: coupling ε **-telescoping and VEM** For each decreasing value of ε :

- \blacktriangleright VE step: Optimization of variational parameters ψ for θ fixed
- ► VM step: Optimization of model parameters $\boldsymbol{\theta} = (\boldsymbol{B}, \boldsymbol{\Sigma})$ for $\boldsymbol{\psi}$ fixed

APPLICATIONS

Numerical Study

	Data:	<i>n</i> =	10000,	d =	6, /	р =	4
--	-------	------------	--------	-----	------	-----	---

- **Coefficients** *B* with entries
 - 0: no effect
 - 0.5: weak effect
 - 1: strong effect

► **Sample size**: 1000

Abundance:

203

Inference of PLN

Marginal likelihood: $\log p_{\theta}(\mathbf{Y}) = \int_{\mathbb{R}_{p}} p_{\theta}(\mathbf{Y}, \mathbf{Z}) d\mathbf{Z}$

EM algorithm: $\mathbb{E}_{\theta}[\log p_{\theta}(\mathbf{Y}, \mathbf{Z}) | \mathbf{Y}]$ (intractable)

Variational EM [2]: Maximises the Evidence Lower Bound (ELBO)

 $J(\mathbf{Y}, \theta, \boldsymbol{\psi}) = \log p_{\theta}(\mathbf{Y}) - \mathrm{KL}[q_{\psi}(\mathbf{Z})||p_{\theta}(\mathbf{Z}|\mathbf{Y})]$ $= \mathbb{E}_{q_{\psi}}[\log p_{\theta}(\boldsymbol{Y}, \boldsymbol{Z})] - \mathbb{E}_{q_{\psi}}[\log q_{\psi}(\boldsymbol{Z})]$

Variational parameters: $\psi = (M, S)$

REFERENCES

wetness, vegetation index

CONCLUSION

- Extension of SIC to the PLN model
- Identifies relevant variables by stepwise approximation of the ℓ_0 norm and decreases the coefficients of non-active variables to zero
- Application on UMRF data (Amont Saint-Nectaire, MINDS, TANDEM)
- Extension on zero-inflated PLN

[1]Chassard, C. et al. "Lactic Starter Dose Shapes S. aureus and STEC O26: H11 Growth, and Bacterial Community Patterns in Raw Milk Uncooked Pressed Cheeses". In: Microorganisms 9.5 (2021).

[2]J. Chiquet, M. Mariadassou, and S. Robin. "The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances". In: Frontiers in Ecology and Evolution 9 (2021).

[3]Meadhbh O'Neill and Kevin Burke. "Variable selection using a smooth information criterion for distributional regression models". In: Statistics and Computing 33.3 (2023), p. 71. [4]J. Chauvet, C. Trottier, and X. Bry. "Component-Based Regularization of Multivariate Generalized Linear Mixed Models". In: Journal of Computational and Graphical Statistics 28.4 (2019).

UNIVERSITÉ Clermont Auvergne